Panaudotų padangų pirolizės alyvos nusierinimas hidrodinaminės kavitacijos reaktoriuje
Darbo gynimo komisijos pirmininkas / Thesis Defence Board Chairman | |
Darbo gynimo komisijos narys / Thesis Defence Board Member | |
Darbo gynimo komisijos narys / Thesis Defence Board Member | |
Darbo gynimo komisijos narys / Thesis Defence Board Member | |
Darbo gynimo komisijos narys / Thesis Defence Board Member |
Pasaulyje kiekvienais metais pagaminama daugiau nei 1,5 mlrd. padangų, iš kurių daugiau nei 1 mlrd. padangų po panaudojimo tampa atliekomis ir kelią didelę aplinkos taršą. Siekiant sumažinti aplinkos taršos mąstą būtina naudoti tvarius padangų perdirbimo metodus, o vienas iš jų yra padangų pirolizė. Iš padangų išgautos pirolizės alyvos energetinė vertė yra artima dyzelino ir benzino vertei, tačiau dėl joje esančio per didelio sieros kiekio panaudotų padangų pirolizės alyvą būtina nusierinti iki leistinų normų. Vienas paprasčiausių, tačiau mažai ištirtas nusierinimo metodas yra hidrodinaminė kavitacija. Įvertintas pirolizės alyvos ir distiliuoto vandens mišinio santykio, proceso slėgio ir laiko poveikis pirolizės alyvos nusierinimo efektyvumui ir nustatytos optimalios hidrodinaminės kavitacijos sąlygos pirolizės alyvos nusierinimo procesui.
Nowadays, when science and technology are advancing rapidly and life is becoming more and more convenient and the things used are more readily available, another problem is faced: extreme consumption. It is estimated that about 1.5 billion is produced worldwide each year and units of used tires with a total mass of 17 million tones. Only some of these tires are recycled and others are disposed of in landfills. Taking into account the growing needs of developing countries and assessing projections that there will be over 5 billion used tires in 2030. One promising process by which used tires can be turned into a higher value – added product is pyrolysis. The liquid phase obtained during the pyrolysis process – oil, can be equated to petroleum products, but the application of this oil for direct consumption, fuel is not possible due to the high sulfur concentration. Hydrodynamic cavitation is an oxidation process because OH– and H+ radicals are generated during this process because the hydroxyl radical has strong oxidation properties. For this reason, hydrodynamic cavitation is intended to be used for desulfurization purposes. The results of the performed experimental study revealed that the change of the ratio of pyrolysis oil and distilled water in the used tires and the lengthening of the desulphurisation time have a positive effect on the desulphurisation efficiency. The influence of process pressure on the desulphurisation efficiency changes with the change of the desulphurisation process pressure. The highest desulphurisation efficiency values were achieved during the process for 60 minutes at a pressure of 3 bar and when the ratio of pyrolysis oil to distilled water mixture was 7,5:92,5. After desulphurisation in the hydrodynamic cavitation reactor, the values of oil density and kinematic viscosity were found to increase with increasing process pressure and pyrolysis oil content in the mixture.